Chapter 12 Vector-Valued Functions

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

April 16, 2024

Table of Contents

(1) Vector-valued functions
(2) Differentiation and integration of vector-valued functions

Table of Contents

(1) Vector-valued functions

(2) Differentiation and integration of vector-valued functions

Space curves and vector-valued functions

- A plane curve is defined as the set of ordered pairs $(f(t), g(t))$ together with their defining parametric equations

$$
x=f(t) \quad \text { and } \quad y=g(t)
$$

where f and g are continuous functions of t on an interval l.

- A space curve C is the set of all ordered triples $(f(t), g(t), h(t))$ together with their defining parametric equations

$$
x=f(t), \quad y=g(t), \quad \text { and } \quad z=h(t)
$$

where f, g, and h are continuous functions of t on an interval l.

- A new type of function, called a vector-valued function, that maps real numbers to vectors is first introduced.

Definition 12.1 (Vector-valued function)

A function of the form

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j} \quad \text { (Plane) }
$$

or

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k} \quad \text { Space })
$$

is a vector-valued function, where the component functions f, g, and h are real-valued functions of the parameter t. Vector-valued functions are sometimes denoted as $\mathbf{r}(t)=\langle f(t), g(t)\rangle$ or $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$.

- Technically, a curve in the plane or in space consists of a collection of points and the defining parametric equations. Two different curves can have the same graph.
- For instance, each of the curves given by

$$
\mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j} \quad \text { and } \quad \mathbf{r}(t)=\sin t^{2} \mathbf{i}+\cos t^{2} \mathbf{j}
$$

has the unit circle as its graph, but these equations do not represent the same curve-because the circle is traced out in different ways!

- Be sure you see the distinction between the vector-valued function \mathbf{r} and the real-valued functions f, g, and h. They are functions of the real variable t, but $\mathbf{r}(t)$ is a vector, whereas $f(t), g(t)$, and $h(t)$ are real numbers (for each specific value of t).
- Vector-valued functions serve dual roles in the representation of curves.
- By letting the parameter t represent time, you can use a vector-valued function to represent motion along a curve.
- Or, in the more general case, you can use a vector-valued function to trace the graph of a curve.

Figure 1: Curve C is traced out by the terminal point of position vector $\mathbf{r}(t)$.

- In either case, the terminal point of the position vector $\mathbf{r}(t)$ coincides with the point (x, y) or (x, y, z) on the curve given by the parametric equations, as shown in Figure 1.
- The arrowhead on the curve indicates the curve's orientation by pointing in the direction of increasing values of t.
- Unless stated otherwise, the domain of a vector-valued function \mathbf{r} is considered to be the intersection of the domains of the component functions f, g, and h.
- For instance, the domain of $\mathbf{r}(t)=\ln t \mathbf{i}+\sqrt{1-t} \mathbf{j}+t \mathbf{k}$ is the interval $(0,1]$.

Example 1 (Sketching a plane curve)

Sketch the plane curve represented by the vector-valued function

$$
\mathbf{r}(t)=2 \cos t \mathbf{i}-3 \sin t \mathbf{j}, \quad 0 \leq t \leq 2 \pi
$$

Figure 2: The ellipse $\mathbf{r}(t)=2 \cos t \mathbf{i}-3 \sin t \mathbf{j}$ is traced clockwise as t increases from 0 to 2π.

Example 2 (Sketching a space curve)

Sketch the space curve represented by the vector-valued function

$$
\mathbf{r}(t)=4 \cos t \mathbf{i}+4 \sin t \mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq 4 \pi
$$

Figure 3: As t increases from 0 to 4π, two spirals on the helix are traced out.

Example 3 (Representing a graph by a vector-valued function)

Represent the parabola given by $y=x^{2}+1$ by a vector-valued function.

Example 4 (Representing a graph by a vector-valued function)

Sketch the space curve C represented by the intersection of the semiellipsoid

$$
\frac{x^{2}}{12}+\frac{y^{2}}{24}+\frac{z^{2}}{4}=1, \quad z \geq 0
$$

and the parabolic cylinder $y=x^{2}$. Then, find a vector-valued function to represent the graph.

Figure 4: The curve C is the intersection of the semiellipsoid and the parabolic cylinder.

Limits and continuity

- To add or subtract two vector-valued functions (in the plane), you can write

$$
\begin{aligned}
\mathbf{r}_{1}+\mathbf{r}_{2} & =\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]+\left[f_{2}(t) \mathbf{i}+g_{2}(t) \mathbf{j}\right] \\
& =\left[f_{1}(t)+f_{2}(t)\right] \mathbf{i}+\left[g_{1}(t)+g_{2}(t)\right] \mathbf{j} \\
\mathbf{r}_{1}-\mathbf{r}_{2} & =\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]-\left[f_{2}(t) \mathbf{i}+g_{2}(t) \mathbf{j}\right] \\
& =\left[f_{1}(t)-f_{2}(t)\right] \mathbf{i}+\left[g_{1}(t)-g_{2}(t)\right] \mathbf{j} .
\end{aligned}
$$

- To multiply and divide a vector-valued function by a scalar, you can write

$$
\begin{aligned}
c \mathbf{r}(t) & =c\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]=c f_{1}(t) \mathbf{i}+c g_{1}(t) \mathbf{j} \\
\frac{\mathbf{r}(t)}{c} & =\frac{\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]}{c}=\frac{f_{1}(t)}{c} \mathbf{i}+\frac{g_{1}(t)}{c} \mathbf{j}, \quad c \neq 0 .
\end{aligned}
$$

Definition 12.2 (The limit of a vector-valued function)

1. If \mathbf{r} is a vector-valued function such that $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j} \quad \text { Plane }
$$

provided f and g have limits as $t \rightarrow a$.
2. If \boldsymbol{r} is a vector-valued function such that

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}, \text { then }
$$

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j}+\left[\lim _{t \rightarrow a} h(t)\right] \mathbf{k} \quad \text { Space }
$$

provided f, g, and h have limits as $t \rightarrow a$.

- If $\mathbf{r}(t)$ approaches the vector \mathbf{L} as $t \rightarrow a$, the length of the vector $\mathbf{r}(t)-\mathbf{L}$ approaches 0 .
- That is, $\|\mathbf{r}(t)-\mathbf{L}\| \rightarrow 0$ as $t \rightarrow a$. This is illustrated graphically in Figure 5.

Figure 5: As t approaches $a, \mathbf{r}(t)$ approaches the limit \mathbf{L}. For the limit \mathbf{L} to exist, it is not necessary that $\mathbf{r}(a)$ be defined or that $\mathbf{r}(a)$ be equal to \mathbf{L}.

Definition 12.3 (Continuity of a vector-valued function)

A vector-valued function \mathbf{r} is continuous at a point given by $t=a$ if the limit of $\mathbf{r}(t)$ exists as $t \rightarrow a$ and

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)
$$

A vector-valued function \mathbf{r} is continuous on an interval l if it is continuous at every point in the interval.

- A vector-valued function is continuous at $t=a$ if and only if each of its component function is continuous at $t=a$.

Example 5 (Continuity of vector-valued functions)

Discuss the continuity of the vector-valued function given by

$$
\mathbf{r}(t)=t \mathbf{i}+a \mathbf{j}+\left(a^{2}-t^{2}\right) \mathbf{k} \quad a \text { is a constant }
$$

at $t=0$.

Example 6 (Continuity of vector-valued functions)

Determine the interval(s) on which the vector-valued function $\mathbf{r}(t)=t \mathbf{i}+\sqrt{t+1} \mathbf{j}+\left(t^{2}+1\right) \mathbf{k}$ is continuous.

Table of Contents

(1) Vector-valued functions

(2) Differentiation and integration of vector-valued functions

Differentiation of vector-valued functions

- The definition of the derivative of a vector-valued function parallels the definition given for real-valued functions.

Definition 12.4 (The derivative of a vector-valued function)

The derivative of a vector-valued function \mathbf{r} is defined by

$$
\mathbf{r}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}
$$

for all t for which the limit exists. If $\mathbf{r}^{\prime}(t)$ exists, then \mathbf{r} is differentiable at t. If $\mathbf{r}^{\prime}(t)$ exists for all t in an open interval I, then \mathbf{r} is differentiable on the interval I. Differentiability of vector-valued functions can be extended to closed intervals by considering one-sided limits.

- Differentiation of vector-valued functions can be done on a component-by-component basis.
- To see why this is true, consider the function given by

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}
$$

- Applying the definition of the derivative produces the following.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t) \mathbf{i}+g(t+\Delta t) \mathbf{j}-f(t) \mathbf{i}-g(t) \mathbf{j}}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0}\left\{\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}\right] \mathbf{i}+\left[\frac{g(t+\Delta t)-g(t)}{\Delta t}\right] \mathbf{j}\right\} \\
& =\left\{\lim _{\Delta t \rightarrow 0}\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}\right]\right\} \mathbf{i}+\left\{\lim _{\Delta t \rightarrow 0}\left[\frac{g(t+\Delta t)-g(t)}{\Delta t}\right]\right\} \mathbf{j} \\
& =f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}
\end{aligned}
$$

- Note that the derivative of the vector-valued function \mathbf{r} is itself a vector-valued function.
- You can see from Figure 6 that $\mathbf{r}^{\prime}(t)$ is a vector tangent to the curve given by $\mathbf{r}(t)$ and pointing in the direction of increasing t-values.

Figure 6: Definition of the derivative of a vector-valued functions.

Theorem 12.1 (Differentiation of vector-valued functions)

(1) If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where f and g are differentiable functions of t, then

$$
\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j} . \quad \text { Plane }
$$

(2) If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are differentiable functions of t, then

$$
\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k} . \quad \text { Space }
$$

Example 1 (Differentiation of vector-valued functions)

For the vector-valued function given by $\mathbf{r}(t)=t \mathbf{i}+\left(t^{2}+2\right) \mathbf{j}$, find $\mathbf{r}^{\prime}(t)$. Then sketch the plane curve represented by $\mathbf{r}(t)$, and the graphs of $\mathbf{r}(1)$ and $\mathbf{r}^{\prime}(1)$.

Figure 7: $\mathbf{r}(t)=t \mathbf{i}+\left(t^{2}+2\right) \mathbf{j}$

Example 2 (Higher-order differentiation)

For the vector-valued function given by $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+2 t \mathbf{k}$, find each of the following.
a. $\mathbf{r}^{\prime}(t)$
b. $\mathbf{r}^{\prime \prime}(t)$
c. $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)$
d. $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$

- The parametrization of the curve represented by the vector-valued function

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

is smooth on an open interval if f^{\prime}, g^{\prime}, and h^{\prime} are continuous on I and $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$ for any value of t in the interval l.

Theorem 12.2 (Properties of the derivative)

Let \mathbf{r} and \mathbf{u} be differentiable vector-valued functions of t, let w be a differentiable real-valued function of t, and let c be scalar.
(1) $D_{t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t)$
(2) $D_{t}[\mathbf{r}(t) \pm \mathbf{u}(t)]=\mathbf{r}^{\prime}(t) \pm \mathbf{u}^{\prime}(t)$
(3) $D_{t}[w(t) \mathbf{r}(t)]=w(t) \mathbf{r}^{\prime}(t)+w^{\prime}(t) \mathbf{r}(t)$
(1) $D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]=\mathbf{r}(t) \cdot \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{u}(t)$
(5) $D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]=\mathbf{r}(t) \times \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{u}(t)$
(6) $D_{t}[\mathbf{r}(w(t))]=\mathbf{r}^{\prime}(w(t)) w^{\prime}(t)$
(3) If $\mathbf{r}(t) \cdot \mathbf{r}(t)=c$, then $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0$.

Example 4 (Using properties of the derivative)

For the vector-valued functions given by

$$
\mathbf{r}(t)=\frac{1}{t} \mathbf{i}-\mathbf{j}+\ln t \mathbf{k} \quad \text { and } \quad \mathbf{u}(t)=t^{2} \mathbf{i}-2 t \mathbf{j}+\mathbf{k}
$$

find a. $D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]$ and b. $D_{t}\left[\mathbf{u}(t) \times \mathbf{u}^{\prime}(t)\right]$.

Integration of vector-valued functions

- The following definition is a rational consequence of the definition of the derivative of a vector-valued function.

Definition 12.5 (Integration of vector-valued functions)

- If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where f and g are continuous on $[a, b]$, then the indefinite integral(antiderivative) of \mathbf{r} is

$$
\int \mathbf{r}(t) \mathrm{d} t=\left[\int f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int g(t) \mathrm{d} t\right] \mathbf{j} \quad \text { Plane }
$$

and its definite integral over the interval $a \leq t \leq b$ is

$$
\int_{a}^{b} \mathbf{r}(t) \mathrm{d} t=\left[\int_{a}^{b} f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) \mathrm{d} t\right] \mathbf{j}
$$

Definition 12.5 (continue)

- If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are continuous on $[a, b]$, then the indefinite integral (antiderivative) of \mathbf{r} is
$\int \mathbf{r}(t) \mathrm{d} t=\left[\int f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int g(t) \mathrm{d} t\right] \mathbf{j}+\left[\int h(t) \mathrm{d} t\right] \mathbf{k} \quad$ Space and its definite integral over the interval $a \leq t \leq b$ is

$$
\int_{a}^{b} \mathbf{r}(t) \mathrm{d} t=\left[\int_{a}^{b} f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) \mathrm{d} t\right] \mathbf{j}+\left[\int_{a}^{b} h(t) \mathrm{d} t\right] \mathbf{k} .
$$

- The antiderivative of a vector-valued function is a family of vector-valued functions all differing by a constant vector \mathbf{C}.
- For instance, if $\mathbf{r}(t)$ is a three-dimensional vector-valued function, then for the indefinite integral $\int \mathbf{r}(t) \mathrm{d} t$, you obtain three constants of integration
$\int f(t) \mathrm{d} t=F(t)+C_{1}, \int g(t) \mathrm{d} t=G(t)+C_{2}, \int h(t) \mathrm{d} t=H(t)+C_{3}$
where $F^{\prime}(t)=f(t), G^{\prime}(t)=g(t)$, and $H^{\prime}(t)=h(t)$.
- These three scalar constants produce one vector constant of integration,

$$
\begin{aligned}
\int \mathbf{r}(t) \mathrm{d} t & =\left[F(t)+C_{1}\right] \mathbf{i}+\left[G(t)+C_{2}\right] \mathbf{j}+\left[H(t)+C_{3}\right] \mathbf{k} \\
& =[F(t) \mathbf{i}+G(t) \mathbf{j}+H(t) \mathbf{k}]+\left[C_{1} \mathbf{i}+C_{2} \mathbf{j}+C_{3} \mathbf{k}\right] \\
& =\mathbf{R}(t)+\mathbf{C}
\end{aligned}
$$

where $\mathbf{R}^{\prime}(t)=\mathbf{r}(t)$.

Example 5 (Integrating a vector-valued function)

Find the indefinite integral $\int(t \mathbf{i}+3 \mathbf{j}) \mathrm{d} t$.

Example 6 (Definite Integral of a vector-valued function)

Evaluate the integral

$$
\int_{0}^{1} \mathbf{r}(t) \mathrm{d} t=\int_{0}^{1}\left(\sqrt[3]{t} \mathbf{i}+\frac{1}{t+1} \mathbf{j}+e^{-t} \mathbf{k}\right) \mathrm{d} t
$$

